103 research outputs found

    Human Circadian Phenotyping and Diurnal Performance Testing in the Real World

    Get PDF
    In our continuously developing 'around the clock' society, there is a need to increase our understanding of how changes in biology, physiology and psychology influence our health and performance. Embedded within this challenge, is the increasing need to account for individual differences in sleep and circadian rhythms, as well as to explore the impact of time of day on performance in the real world. There are a number of ways to measure sleep and circadian rhythms from subjective questionnaire-based methods to objective sleep/wake monitoring, actigraphy and analysis of biological samples. This paper proposes a protocol that combines multiple techniques to categorize individuals into Early, Intermediate or Late circadian phenotype groups (ECPs/ICPs/LCPs) and recommends how to conduct diurnal performance testing in the field. Representative results show large differences in rest-activity patterns derived from actigraphy, circadian phase (dim light melatonin onset and peak time of cortisol awakening response) between circadian phenotypes. In addition, significant differences in diurnal performance rhythms between ECPs and LCPs emphasizes the need to account for circadian phenotype. In summary, despite the difficulties in controlling influencing factors, this protocol allows a real-world assessment of the impact of circadian phenotype on performance. This paper presents a simple method to assess circadian phenotype in the field and supports the need to consider time of day when designing performance studies

    The structural and functional connectivity of the posterior cingulate cortex : comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships

    Get PDF
    The default mode network (DMN) is one of the most studied resting-state networks, and is thought to be involved in the maintenance of consciousness within the alert human brain. Although many studies have examined the functional connectivity (FC) of the DMN, few have investigated its underlying structural connectivity (SC), or the relationship between the two. We investigated this question in fifteen healthy subjects, concentrating on connections to the precuneus/posterior cingulate cortex (PCC), commonly considered as the central node of the DMN. We used group independent component analysis (GICA) and seed-based correlation analysis of fMRI data to quantify FC, and streamline and probabilistic tractography to identify structural tracts from diffusion tensor imaging (DTI) data. We first assessed the presence of structural connections between the DMN regions identified with GICA. Of the 15 subjects, when using the probabilistic approach 15 (15) demonstrated connections between the PCC and mesial prefrontal cortex (mPFC), 11 (15) showed connections from the PCC to the right inferior parietal cortex (rIPC) and 8 (15) to the left IPC. Next, we assessed the strength of FC (magnitude of temporal correlation) and SC (mean fractional anisotropy of reconstructed tracts (streamline), number of super-threshold voxels within the mask region (probabilistic)). The lIPC had significantly reduced FC to the PCC compared to the mPFC and rIPC. No difference in SC strength between connections was found using the streamline approach. For the probabilistic approach, mPFC had significantly lower SC than both IPCs. The two measures of SC strength were significantly correlated, but not for all paired connections. Finally, we observed a significant correlation between SC and FC for both tractography approaches when data were pooled across PCC-lIPL, PCC-rIPL and PCC-mPFC connections, and for some individual paired connections. Our results suggest that the streamline approach is advantageous for characterising the connectivity of long white matter tracts (PCC-mPFC), whilst the probabilistic approach was more reliable at identifying PCC-IPC connections. The direct comparison of FC and SC indicated that pairs of nodes with stronger structural connections also had stronger functional connectivity, and that this was maintained with both tractography approaches. Whilst the definition of SC strength remains controversial, our results could be considered to provide some degree of validation for the measures of SC strength that we have used. Direct comparisons of SC and FC are necessary in order to understand the structural basis of functional connectivity, and to characterise and quantify the changes in the brain's functional architecture that occur as a result of normal physiology or pathology

    Functional Connectivity of the Posteromedial Cortex

    Get PDF
    As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network. The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results

    Gender Specific Re-organization of Resting-State Networks in Older Age

    Get PDF
    Advancing age is commonly associated with changes in both brain structure and function. Recently, the suggestion that alterations in brain connectivity may drive disruption in cognitive abilities with age has been investigated. However, the interaction between the effects of age and gender on the reorganisation of resting-state networks is not fully understood. This study sought to investigate the effect of both age and gender on intra- and inter-network functional connectivity (FC) and the extent to which RSN node definition may alter with older age. We obtained resting-state functional magnetic resonance images from younger (n=20) and older (n=20) adults and assessed the FC of three main cortical networks: default mode (DMN), dorsal attention (DAN) and saliency (SN). Older adults exhibited reduced DMN intra-network FC and increased inter-network FC between the anterior cingulate cortex (ACC) and nodes of the DAN, in comparison to younger participants. Furthermore, this increase in ACC-DAN inter-network FC with age was driven largely by male participants. However, further analyses suggested that the spatial location of ACC, bilateral anterior insula and orbitofrontal cortex RSN nodes changed with older age and that age-related gender differences in FC may reflect spatial re-organisation rather than increases or decreases in FC strength alone. These differences in both the FC and spatial distribution of RSNs between younger and older adults provide evidence of reorganisation of fundamental brain networks with age, which is modulated by gender. These results highlight the need to further investigate changes in both intra- and inter- network FC with age, whilst also exploring the modifying effect of gender. They also emphasise the difficulties in directly comparing the FC of RSN nodes between groups and suggest that caution should be taken when using the same RSN node definitions for different age or patient groups to investigate FC

    Early haemodynamic changes observed in patients with epilepsy, in a visual experiment and in simulations

    Get PDF
    Objective: The objective of this study was to investigate whether previously reported early blood oxygen level dependent (BOLD) changes in epilepsy could occur as a result of the modelling techniques rather than physiological changes. Methods: EEG-fMRI data were analysed from seven patients with focal epilepsy, six control subjects undergoing a visual experiment, in addition to simulations. In six separate analyses the event timing was shifted by either -9,-6,-3,+3,+6 or +9 s relative to the onset of the interictal epileptiform discharge (IED) or stimulus. Results: The visual dataset and simulations demonstrated an overlap between modelled haemodynamic response function (HRF) at event onset and at \ub13 s relative to onset, which diminished at \ub16 s. Pre-spike analysis at -6 s improved concordance with the assumed IED generating lobe relative to the standard HRF in 43% of patients. Conclusion: The visual and simulated dataset findings indicate a form of "temporal bleeding", an overlap between the modelled HRF at time 0 and at \ub13 s which attenuated at \ub16 s. Pre-spike analysis at -6 s may improve concordance. Significance: This form of analysis should be performed at 6 s prior to onset of IED to minimise temporal bleeding effect. The results support the presence of relevant BOLD responses occurring prior to IEDs

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Classification of human chronotype based on fMRI network-based statistics

    Get PDF
    Chronotype—the relationship between the internal circadian physiology of an individual and the external 24-h light-dark cycle—is increasingly implicated in mental health and cognition. Individuals presenting with a late chronotype have an increased likelihood of developing depression, and can display reduced cognitive performance during the societal 9–5 day. However, the interplay between physiological rhythms and the brain networks that underpin cognition and mental health is not well-understood. To address this issue, we use rs-fMRI collected from 16 people with an early chronotype and 22 people with a late chronotype over three scanning sessions. We develop a classification framework utilizing the Network Based-Statistic methodology, to understand if differentiable information about chronotype is embedded in functional brain networks and how this changes throughout the day. We find evidence of subnetworks throughout the day that differ between extreme chronotypes such that high accuracy can occur, describe rigorous threshold criteria for achieving 97.3% accuracy in the Evening and investigate how the same conditions hinder accuracy for other scanning sessions. Revealing differences in functional brain networks based on extreme chronotype suggests future avenues of research that may ultimately better characterize the relationship between internal physiology, external perturbations, brain networks, and disease

    Feasibility and reliability of frailty assessment in the critically ill: a systematic review

    Get PDF
    Background. For healthcare systems, an ageing population poses challenges in the delivery of equitable and effective care. Frailty assessment has the potential to improve care in the intensive care setting, but applying assessment tools in critical illness may be problematic. The aim of this systematic review was to evaluate evidence for the feasibility and reliability of frailty assessment in critical care. Methods. Our primary search was conducted in Medline, Medline In-process, EMBASE, CINAHL, PsycINFO, AMED, Cochrane Database of Systematic Reviews, and Web of Science (January 2001 to October 2017). We included observational studies reporting data on feasibility and reliability of frailty assessment in critical care setting in patients 16 years and older. Feasibility was assessed in terms of timing of evaluation, the background, training and expertise required for assessors, and reliance upon proxy input. Reliability was assessed in terms of inter-rater reliability. Results. Data from 11 study publications are included, representing eight study cohorts and 7761 patients. Proxy involvement in frailty assessment ranged from 58- 100%. Feasibility data were not well-reported overall, but the exclusion rate due to lack of proxy availability ranged from 0 to 45%, the highest rate observed where family involvement was mandatory and the assessment tool relatively complex (Frailty Index, FI). Conventional elements of Frailty Phenotype (FP) assessment required modification prior to use in two studies. Clinical staff tended to use a simple judgement-based tool, the Clinical Frailty Scale (CFS). Inter-rater reliability was reported in one study using the CFS and although a good level of agreement was observed between clinician assessments, this was a small and single centre study. Conclusion. Though of unproven reliability in the critically ill, CFS was the tool used most widely by critical care clinical staff. Conventional FP assessment required modification for general application in critical care, and a FI-based assessment may be difficult to deliver by the critical care team on a routine basis. There is a high reliance on proxies for frailty assessment, and the reliability of frailty assessment tools in critical care needs further evaluation. PROSPERO CRD42016052073
    • …
    corecore